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1. Iatroduction

Qualitative Domains were introduced by Girard [Gir, 1986] [Gir, 1988], as an alternate
means to Scott Domains for providing a semaantics for A-calculus. The main difference between
these two notions of domain lies in the way the function space is constructed. The qualitative
function space is, in fact, made up only of stable functions, which are a proper subset of the set
of all continuous functions. Moreover it is partially ordered with respect to a relation which
induces a finer notion of approximation than the one induced by the pointwise ordering. The
notion of stable function was first introduced by Berry [Ber, 1978], in the context of sequential
functions.

We have studied an alternate description of qualitative A-models, which allows for a
natural definition of a formal system for reasoning about the interpretations of A-terms. More
precisely, we associate, to every qualitative A-model D, a type assignment system for A-terms
T(D). The set of types of T(D) is isomorphic to the set of atoms of D, and moreover given a
A-term M it is possible to derive a type 0 for M if and only if the element of D corresponding to
O belongs to the interpretation of M. A similar connection between Scott’s Do, -A-models and

a suitable class of type assignment systems for A-calculus was studied in [Bar, 1983], [Cop,
1984], [Hon, 1984].

In this paper we describe as a type assignment system the standard qualitative
A-model. This particular example can be easily generalized to arbitrary qualitative A-models.

Describing a qualitative A-model as a type assignment system gives us the possibility
of using standard techniques for studying the fine structure of the model itseif. In the particular
case studied in this paper, for instance, a normalization property of the type derivation system
immediately implies an Approximation Theorem (i.e., the interpretation of a term is the union
of the interpretations of its syntactical approximants ). Moreover the syntax of the type
assignment system that we discuss in this paper provides a deep insight into the structure of
qualitative domains, and in our opinion it illuminates the connection between qualitative
domains and the coherent semantics for linear logic.

In Section 2 of this paper we define a type assignment system, and we show that it
induces a A-model S, where the interpretation of a term is the set of types derivable for it. In
Section 3 we prove an Approximation Theorem for S , using a normalization property of the
type assignment system. Finally, in Section 4 we define the standard qualitative A-model D ,
with an inverse limit construction, and show that S and D are isomorphic.

Throughout the paper we assume the reader familiar with the basic notions and
notations of A-calculus as given in [Bar, 1984]. The definitions of qualitative domains and
stable functions are recalled in Section 4.

2. The construction of the model S.

Now we introduce a formal system for assigning types to A-terms and we show that it
induces a A-model.
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Let V={¢; | i€w} be an infinite set of variables. Starting from V, we define two languages, L

and L'.Terms of the language L, ranged over by @, are defined as follows:
az=0; ¢y l..[May....alsalll>a (n21).
Terms of L', ranged over by p, are defined as follows:
p:=allag,..,alill (n21).
The intended meaning of [ay,..., ozn] is the set whose elements are @{,...,Q, and the intended

meaning of [ ] is the empty set. Accordingly, in the sequel, we will take terms of L and L'
equivalent up to set-theoretic equality ( i.e., reshuffling and repetitions of ¢;'s in subterms of
the form [ay,...,a ] ). Set-theoretic equality is denoted with =.
In order to define the set of types, we introduce five predicates whose denotational meaning will
be made precise in section 4. The five predicates are:

varCL

typec L

seq € L'

compCL'xL’

monc C L'x L'.
These predicates are mutually defined by the rules given in the following definition.

Definition 1.

var ¢ type @  seq p var ¢
1) ——— 2) ~—— 3) ———
type ¢ type poQ comp ¢ ,p
(comp ai'aj)lsi.jsn seq [0‘1 ..... Otn,a'l,...,a'm]
4) n20 5) n,m20
seq [oy,....a ] comp [ay....,.apl.la'y,....0" 1]
comp p,p’ nonc p,p'
6) 7 8) ——————
comp p.p comp p',p nonc p’,p
comp p.p' p=p’ \ comp p,p' nonc @, 0’ )comp p.p’ comp a,a' a=a'
) 10 11
nonc poa , p'oQ nonic p-a,p -’ comp p-a , p'=a’
nonc p,p'

12)

comp p-Q , p' -0

Two remarks, which will be made precise in Section 4, are in order: Rule 9 is distintive of
qualitative domains, while Rule 4 is distinctive of binary qualitative domains.

iIf type @ holds, then we will say that (& is a type. The set of types will be ranged over by 0, T.
If seq p holds, then we will say that p is a sequence. The set of sequences will be ranged over
by ¥.3.

We are now ready to introduce the formal system for assigning types to A-terms.

Definition 2. i) A basis B is a set of pairs x:0, where O is a type. dom(B) will denote the
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set {x | x:0€ B} and B|g will denote the restriction of B to the set of term variables E.

ii) Types are assigned to terms according to the following three rule schemes, where B-M:o
denotes that M has type 0 under the assumptions recorded in B:

(var) ————
{x:0}x:0
B"MZ[O’I,...,Un]—’O' (Bil_N:Ui)lsiSn
("E)nzo
Bu (u 1<i<n Bi )MN:o
B u{x:0‘1....,x:0'n}l— M:o seq [0,....0,] x@&dom(B)
("I)nzo

B F Ax.M:[0y,....0,]-0.

Notice the multiplicative behaviour ( in Girard's terminology ) of the basis in the rule (2E).
Definition 3. Two basis B and B' are coherent iff {x:0, x:0'}C BUB'= comp 0,0".
Some structural properties of this type assignment system are given in Lemma 4.

Lemma 4.i) Let B-M:0.Then {x:T{,...,x:T, }CB implies that there are at least m
occurrences of x in M.

i) Let BFAx.M:0. Then 0= p=T for some p such that seqp.

iii) Let B-M:0, B'-M:T and let B and B’ be coherent; then comp &, 7.

iv) Let BFM:0, B'M:1, let B and B' be coherent and let 0=T; then B=B".

Proof.i) and ii) are immediate.

ii1) and iv) will be proved simultaneously by induction on M.

M=x. Obvious.

M=PQ. B-M:0 and B’|-M:T implies that there are two derivations of the following shape:

BoI—PZ[O'l,. .. ,O'n]—)O' (Bil_ozoi)lsisn Blol—P:[Tl,... ,Tm]—)'[ (B.iFQ:Ti)lsism
(=E) (-E)
B= BoU (U 1<i<n Bi)l—PQZO' B'= Blou (U 1<i<m B'i)I—PQZT

Since two subsets of two coherent basis are in turn coherent , by induction
comp [0‘1,...,0',1]-)0’, [ty.....Tn]>7 and comp (O‘i,Tj) 1si<n, 1gjsm which implies comp
0.T. Moreover, if 0=T then [0 (,....,0,)=[T{.....T ] and iv) follows directly by induction.
M=Ax.P. If B-M:0 and B'HM:T then, by ii) we must have o=1[0(,....0,]1-0" and
1=[1y,...,Tp1>» 7", with m,n>0. This implies that there are two derivations of the following
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shape:
Bu{x:ioy,..., x:0,}-P:0" seq [04,....0,] x@¢dom(B)
(=0
BFAx.P:[oy,...,0,]-0"
and
B'u{x:‘[l,...,x:‘rm}l—P:T' seq [14,....Tp,] x#¢dom(B’)
(=1

B'HAx.Pl1y,....Th]=T"

If comp [cl....,O‘n]. [Tl....,‘rm]. then by induction comp ¢',T'. If ¢'=T' then, by definition
of comp, this implies comp G,7, else, if 0'=T1",by induction on iv), [oq,....05)=l1,.... T 5],
and so 0=1. If nonc [cl,....cn]. [Tl,...,‘rm], iii) follows by definition of comp. iv) is
immediate by induction.

0

Now we are able to define the model S .

Definition 5. S =(S,o, [ 1), where:
S=<{AcLiVay,a; €A comp .03}, € >

sy osp={Q ag,....agl> aesy, {aj...ay)c s} (sy.5p€8).

Given an environment &:Var-S, where Var is the set of term variables, § induces a basis
B§= {x:a | ae E(x)}; then [[M]Ig ={c|3B. B+M:0 and BCBg}.

Theorem 6. S is a A-model.

Proof. First of all, it is necessary to prove that VM€A. VE.IM] g € S. This is an immediate
consequence of Lemma 4.iii).

Then S can be proved to be a A-model by showing that it satisfies the six conditions defining a
A-model given by Hindley and Longo in [Hin, 1980], i.e.:

1) xDg=g(x)

2) [[MN]]§= |[M]|§° |[N]]§;

3) [Ax.M ]l§°s= [Mllg[slx];

4) (VxeFV(M). [x]g= [xlg) = IMIg= IMDg;

5) [Ax.M ]|§= [Ax.Mly/x] Ilg, if y € FV(M),

6) (vses. [M] Els/x]= IND §[slx]) = [Ax.M ]|§= [Ax.N1 g

This will be proved by induction on terms.
1) I[x]lg ={oc13B. B tx:0 and BCBg }={oclocekx)};

2) |IMN]]§ ={oc 13B. B -MN:0 and BCBg }=
{o IBB.Bl,..., B, < Bg. Bl—M:[O'l,...,O'n]-ec and (Bil—N:Gi)iSn}= (by induction)
{o|loy.....05)»0€ [MIgand (0;€ NI )icn)= IMIg o ENTg (by def. of °);
3) [Ax.M ]I§°s={cl 3B. BCBt and BHAx.M: [0,...,0,]+0C and (Gies)isn}=
{c] BBCBg Bu{x:Gl,...,x:cn}l—M:o' and (O'ies)isn}=
{c13B'c Bg[s/x].B'l—MZU};
4) (VxeFVOD). Txlg= [xlg) = (Vx€EV(M). {0 | €E ()= (0 |06t (W) =
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(BEIFV(M)= BE.IFV(M) = (b)’ Lemma 4.i) {0' l 3B.B l—MZO' and BCB& } =
{c13B. BFHM:c and BCBt- 1= [[M]|§= ![M]]g':

5) immediate from the definition of [ 1;
6) [Ax.M ]I§= (by Lemma 4.ii){ [Gl,...,on]—)o | 3B CBE' BFAx.M:[oy,...,0,]50})=

{ log..... oal-0 | 3BCB§.BU {x:cl,...,xzon}l—M:G and seq [0‘1,...,0'nl and

x¢dom(B)}=
{ [0‘1,...,0‘n]—)0’ | 3B’ CBE[[O’l,...,O'n]lx]' B'M:0 }= (since Vs€eS. [Mni[sle

[Nni[slx]) {log.....0,]=»0 3B CBH o1,....onl/x)- B'FN:o}= [Ax.N1 g
0

3. The Approximation Theorem.

Every derivation D of BF-M:0 in the above type assignment system is normalizable. Here
normalizable means that D can be transformed into a derivation D' of BF-M':0 where no
application of the rute (=) in D' is immediately followed by an application of the rule (5 E) and
M’ is a B-reduct of M. Using this fact we will show that the interpretation of a term in S is the
collection of the interpretations of its syntactical approximants. This will be called the
Approximation Theorem for the model S .

Definition 7. i) Let D be the deduction: BHM:0. A cut in D is an application of the rule (=)
immediately followed by an application of the rule (- E);

ii) The degree of a cut is the number of type symbols occurring in the premises of the
application of the rule (= E) determining the cut.

ii1) The degree of a deduction D, G(D), is the pair <d,n> where n is the number of cuts in D
and d is the maximum degree of all cuts in D.

iv) A deduction D is normal iff G(D)=<0,0>.

We consider the pairs ordered in lexicographic order (i.e., <d,n> E <d’,n’'> iff (dEd’ ) or ( d=d'
and nEn’)).

Lemma 8. D:B-M:0 and G(D) > 0 implies that there exists D' such that D'-M":0, where M
B-reduces to M' and G(D') < G(D).
Proof. We have to distinguish two cases, according to the aumber of premises of the (»E) rule
which determines the cut.
1) At least one of the cuts with the maximum degree in D is of the following shape:

BFP:t x@dom(B)

(=D
BFAx.PdIl->1
(=E)

BI(Ax.P)Q:T.
This implies that D: BUB'-C[(Ax.P)Q]:0, for a suitable context C[ ].
Then, if x occurs in P at all, X occurs in subterms of P S;[x] (i>0), which occur in subderivations
of D of the shape:
D1 Blll_R[ ]-’0‘1
(=E
Bi I—RSi[X]ZO'i.

Then D' is obtained from D by performing the following three operations:
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i) replacing every D; with:

Di' Bi. FR:( ]"?C'i
(»E )/
Bi'l—RSi [Q\X]ZO'i

i) replacing (Ax.P)Q and every descendent of it with P[Q\x]

iii) deleting the cut.

Thus we have D': BUB'HCI[PIQ\x]):o and G(D') < G(D).

2) All the cuts with the maximum degree in D are of the following shape:

Bu(x:oy,...x:0,}FP:c  seqloy....0p] x#dom(B)

(-1
BHAx.P:loy....,0,]-0 (BiQ:0))icn
(-E)

Bu(u;¢,BPH(Ax.P)Q:0.
Pick one of these. This implies that D: BUB'CI(Ax.P)Ql:, for a suitable context C[ ]. Now,

there are m>n occurrences of x in P, by Lemma 4.i). Exactly n of these occurrences occur in
subderivations of D; (1<i<n), consisting of an application of the (var) rule:

Di:

(var)
X:O'il—xt ;.
The remaining m-n occurrences of x are in subterms of P for which no type has been derived in
D. Then D' is obtained from D by performing the following four operations:
i) replacing every D; with D;' :B;~Q:0;
ii) handling the remaining m-n occurrences of x for which no type has been derived in D as in 1)
iii) replacing (Ax.P)Q and every descendent of it with PIQ\x]
iv) deleting the cut.
Thus we have D': BUB'CI[PIQ\x]l:0 and G(D') < G(D).

The following theorem is an easy consequence of the lemma we have just proved.

Theorem 9. If D:BM:0 then there exists a normal derivation D' and a term M' such that M
P-reduces to M'and D":BF-M":0.

We will now recall the notion of approximate normal form first introduced in [Wad,1978] in
order to discuss the interpretation of non-terminating A-terms.

Definition 10. i) The set A of the approximate normal forms is defined inductivily as:
- a term variable belongs to A ;
- the constant () belongs to A ;
-if Ay,...,A belong to A , then Axy,...Xpn.2A .. Ay belongs to A , for any term variables
Xl . ,Xm,Z.
ii) If M€A, the set of the approximants of M is:
AM)= {A€ A[3IM'. M B-reduces to M' and A and M’ match up to subterms of M'
corresponding to occurrences of in A}.

Approximation Theorem. B-M:c iff 3A€ A(M). BI-A:0.

Gi.e., IMI] §={ LAl g[ Ae AM)}).

Proof. (=>) B-M:0 implies (by Lemma 8) 3D:B-M':6 and M B-reduces to M’ and D is
normal. Let A be the approximant of M obtained from M'by replacing with Q every subterm of
M' to which no type has been assigned by D. Clearly BF-A:0. If D has assigned a type to every
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subterm of M', then M’ is in normal form and A=M",
(&) Let A be an approximant of M such that ID:Bl-A:0. Then M reduces to M’, where M’ is
obtained from A by replacing the occurrences of () with suitable subterms, say Ny,... .Np. Every

occurrence of Q) in A must occur in a subderivation of the shape:

B'FA"[]»1

B'FA'Q:T.
So a derivation D':BI-M':0 can be obtained from D simply by replacing in D the occurrences of
Q with N,... ,Np respectively. Since [ 1 satisfies P-equality, by Theorem 6, we have that
BHM":0 implies BFM:o.

(=E)

1]
The Approximation Theorem is a powerful tool for investigating the theory induced by a model.
In this case it implies immediately, for instance, that the theory of the model S is sensible, and
that [Y] is Tarski's least fixed point operator.
Moreover, using the Approximation Theorem and foliowing the argument in [Ron, 1982], one
can characterize the theory of S as: V§. IMIg& INTg if and only if
Y CI 1.Gf CIM] reduces to a head-normal-form with no initial abstractions then the same holds
for C[N]).
This is the same theory as the one induced by the filter model [Bar,1983]. Equationally it is the
same as the theory of Scott's P;.

We will end this section pointing out the following interesting fact:

Multipticity Theorem. Let Ax.A be an approximate normal form. There are exactly n
occurrences of the variable x in A if and only if n is the maximum integer such that there is a
derivation D:BF2Ax. A:lo (... ,O'n]—m'.

Proof. The theorem follows immediately noticing that, given an approximate normal form A it
is always possible to build a derivation D where every subterm of A has a type, but Q's .

4.Isomorphism Theorem.

In this section we give a semantics to the type assignment system that we introduced in Section
2. More precisely we will show that the model S is isomorphic to a particular binary qualitative
domain D which is a A-model.

First let us recall some definitions about qualitative A- models [Gir, 1986].

Definition 11. i) A qualitative domain D is a set of sets such that:

-JdeD

- D is closed under directed unions

- if a€D and bCa, then beD;

ii) The union of the set of the atomic elements of D i.e.{ z | {z}€ D }, is denoted with [D|;

iti) Let D and D' be two qualitative domains. A function F: D-D’ is stable iff:

- acbeD = F(a)CF(b) ] ]

- F(u;,0 ap=u .0 F(ay, provided a;C a; for i<j

- aub € D = F(anb) = F(a)nF(b);

iv) Let D and D' be two qualitative domain, and let F: DD’be a stable function. The trace of

F is:
Te(F) = {(a.z) | a is a finite element of D, z€|D’|, z€F(a) and zg¢F(a') for alla’Ca};
v) A qualitative domain D is a A-model iff there are two stable functions H and K such that:
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H: D-[D-D] , K: [D~>¢D] 5D and HeK=Id[p_,sp]
where [D- (D] denotes the qualitative domain of the traces of the stable functions from D to D,
partially ordered by inclusion.

Definition 12. Let D be the qualitative domain defined as the standard inverse limit solution
of the following equation:

D=P(V)x[D>¢D]

where P(V) denotes the power set of the set V of variables, ordered by inclusion.
Up to isomorphisms, D is defined as:

D =lim ;50 Dy, Where Dg=(8}, Dy, 1= P(V) X [Dy=sDyl.

Isomorphism Theorem. S and D are isomorphic.

Proof (sketch). One can easily verify that S is a qualitative domain; in particular

IS | ={a |type a}. An isomorphism I between the supports of S and D can be defined in
the following way:

1(0)=({9}.2)
I1(0.....04]»0)= (@, F), where Tr(F)={( {I(G),.... (g}, I(o)}).
Then I can easily be extended to all points of S and D, since the definition of comp is such
that

{aju{a'le S & comp a,a' ¢ 3IdeD (V¢ € {a}u{a'}.{¢}en (unfold(d)) and
VIoy.....041»0 € {a}ula'}. ({I(oy)...., I(gy)}. I(0)) € 74 (unfold(d))).

0

We can now show that the five predicates introduced in Section 2 are abstract syntactic
counterparts of qualitative-domain-theoretic concepts. Let | and L' be elements of S and let I
be the isomorphism between S and D . The following relations hold:

var (1) = I () is a non—functional atom of D
type (1) (= I (p) is an atom of D

seq (L) =4 I (1) is an element of D

comp (i ') and type ()t) and type L) & {I(W),I(1')} is an element of D
comp (L, |t') and seq () and seq (1) =4 I(p) uI(p')is an element of D
nonc (1,p') and type (|L) and type (L') & {I (), I(1")} is not an element of D
ponc ()L, |t') and seq (|t) and seq (K') = T(UI(R")} is not an element of D.
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